Analytical and Numerical Investigation of Two-Dimensional Katabatic Flow Resulting from Local Surface Cooling
نویسندگان
چکیده
The analysis of katabatic flows is often complicated by heterogeneity in surface characteristics. This study focuses on an idealized type of katabatic flow driven by a simple form of inhomogeneous surface forcing: a buoyancy or buoyancy flux that varies down the slope as a top-hat profile (cold strip). We consider the two-dimensional Boussinesq system of governing flow equations with the slope angle, Brunt–Väisälä frequency, and coefficients of eddy viscosity and diffusivity treated as constants. The steady-state problem is solved analytically in a linearized boundary-layer framework. Key flow structures are a primary katabatic jet (essentially the classical one-dimensional Prandtl jet), a rotor-like feature straddling the upslope end of the strip, and two nearly horizontal jets: an inward jet of environmental air feeding into the primary jet on the upslope end of the strip and an outward jet resulting from the intrusion of the primary katabatic jet into the environment on the downslope end of the strip. Next, the corresponding nonlinear initial value problem is solved numerically until a steady state is reached at low levels. The main features of the linear solution are seen in the numerical results, but with some notable differences: (i) the primary jet in the numerical simulation requires a longer distance to attain a one-dimensional boundary-layer structure and extends further downslope off the strip before intruding into the environment; (ii) the numerically simulated outward environmental jet is narrower and more intense than the inward jet, and has a pronounced wave-like structure.
منابع مشابه
Idealized Simulations of Katabatic Flows in Iceland: Katabatic Winds or Land Breeze?
Local thermal flows may be organized where there is a local horizontal pressure gradient due to differential surface heating or cooling. According to a simple conceptual model of katabatic flows (e.g. Egger 1990), they develop in sloping topography where the air at the surface cools relative to the air aloft, e.g. due to radiative cooling on clear nights. The cold and heavy air flows downslope ...
متن کاملOn Numerical Investigation of Non-dimensional Constant Representing the Occurrence of Secondary Peaks in the Nusselt Distribution Curves
The Study of heat transfer augmentation in micro scale and electronic packaging systems are some of the paramount areas of the impending universe. In such systems the cooling of the heat sinks are generally achieved through the impingement of air jet. Assuming the air jet to be continues & incompressible fluid, the heat dissipation rate over the target surface seems to either uniform or well ch...
متن کاملHeat and mass transfer of nanofluid over a linear stretching surface with Viscous dissipation effect
Boundary Layer Flow past a stretching surface with constant wall temperature, of a nanofluid is studied for heat transfer characteristics. The system of partial differential equations describing such a flow is subjected to similarity transformations gives rise to a boundary value problem involving a system of ordinary differential equations. This system is solved by a shooting method. Effect of...
متن کاملNumerical Investigation of Island Effects on Depth Averaged Fluctuating Flow in the Persian Gulf
In the present paper simulation of tidal currents on three-dimensional geometry of the Persian Gulf is performed by the solution of the depth averaged hydrodynamics equations. The numerical solution was applied on two types of discritized simulation domain (Persian Gulf); with and without major islands. The hydrodynamic model utilized in this work is formed by equations of continuity and motion...
متن کاملNumerical Investigation of Vortex Interaction in Pipe Flow
To discover the nonlinear characteristics of pipe flow, we simulated the flow as a sum of many vortex rings. As a first step, we investigated the nonlinear interaction among a maximum of three vortex rings. The pipe wall was replaced by many bound vortices. A free vortex ring moves right or left according to the radius, and that of a particular radius keeps the initial position. The energy of a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012